Subexponential fixed-parameter algorithms for partial vector domination

Toshimasa Ishii, Hirotaka Ono, Yushi Uno

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Given a graph G = (V, E) of order n and an n-dimensional non-negative vector d = (d(1), d(2),..., d(n)) called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S ⊆ V such that every vertex v in V \ S (resp., in V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and subexponential fixed-parameter algorithms with respect to solution size for apex-minor-free graphs (so for planar graphs) are known. In this paper, we consider maximization versions of the problems; that is, for a given integer k, the goal is to find an S ⊆ V with size k that maximizes the total sum of satisfied demands. For these problems, we design subexponential fixed-parameter algorithms with respect to k for apex-minor-free graphs.

本文言語英語
ホスト出版物のタイトルCombinatorial Optimization - Third International Symposium, ISCO 2014, Revised Selected Papers
出版社Springer Verlag
ページ292-304
ページ数13
ISBN(印刷版)9783319091730
DOI
出版ステータス出版済み - 2014
イベント3rd International Symposium on Combinatorial Optimization, ISCO 2014 - Lisbon, ポルトガル
継続期間: 3月 5 20143月 7 2014

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8596 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他3rd International Symposium on Combinatorial Optimization, ISCO 2014
国/地域ポルトガル
CityLisbon
Period3/5/143/7/14

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Subexponential fixed-parameter algorithms for partial vector domination」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル