Subgraph domatic problem and writing capacity of memory devices with restricted state transitions

Tadashi Wadayama, Taisuke Izumi, Hirotaka Ono

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

A code design problem for memory devices with restricted state transitions is formulated as a combinatorial optimization problem that is called a subgraph domatic partition (subDP) problem. If any neighbor set of a given state transition graph contains all the colors, then the coloring is said to be valid. The goal of a subDP problem is to find the valid coloring that has the largest number of colors for a subgraph of a given directed graph. The number of colors in an optimal valid coloring indicates the writing capacity of that state transition graph. The subDP problems are computationally hard; it is proved to be NP-complete in this paper. One of our main contributions in this paper is to show the asymptotic behavior of the writing capacity C(G) for sequences of dense bidirectional graphs; this is given by C(G) = Ω(n/ ln n), where n is the number of nodes. A probabilistic method, Lovász local lemma (LLL), plays an essential role in deriving the asymptotic expression.

本文言語英語
ホスト出版物のタイトルProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1307-1311
ページ数5
ISBN(電子版)9781467377041
DOI
出版ステータス出版済み - 9月 28 2015
イベントIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, 香港
継続期間: 6月 14 20156月 19 2015

出版物シリーズ

名前IEEE International Symposium on Information Theory - Proceedings
2015-June
ISSN(印刷版)2157-8095

その他

その他IEEE International Symposium on Information Theory, ISIT 2015
国/地域香港
CityHong Kong
Period6/14/156/19/15

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • 情報システム
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Subgraph domatic problem and writing capacity of memory devices with restricted state transitions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル