TY - JOUR
T1 - Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand
T2 - Large-scale effects on venting
AU - De Ronde, C. E.J.
AU - Baker, E. T.
AU - Massoth, G. J.
AU - Lupton, J. E.
AU - Wright, I. C.
AU - Sparks, R. J.
AU - Bannister, S. C.
AU - Reyners, M. E.
AU - Walker, S. L.
AU - Greene, R. R.
AU - Ishibashi, J.
AU - Faure, K.
AU - Resing, J. A.
AU - Lebon, G. T.
PY - 2007/7
Y1 - 2007/7
N2 - The 2,500-km Kermadec-Tonga arc is the longest submarine arc on the planet. Here, we report on the second of a series of cruises designed to investigate large-scale controls on active hydrothermal venting on this arc. The 2002 NZAPLUME II cruise surveyed 12 submarine volcanic centers along ∼580 km of the middle Kermadec arc (MKA), extending a 1999 cruise that surveyed 260 km of the southern Kermadec arc (SKA). Average spacing between volcanic centers increases northward from 30 km on backarc crust along the SKA, to 45 km on backarc crust along the southern MKA, to 58 km where the MKA joins the Kermadec Ridge. Volcanic cones dominate in the backarc, and calderas dominate the Kermadec Ridge. The incidence of venting is higher along the MKA (83%, 10 of 12 volcanic centers) than the SKA (67%, 8 of 12), but the relative intensity of venting, as given by plume thickness, areal extent, and concentration of dissolved gases and ionic species, is generally weaker in the MKA. This pattern may reflect subduction of the ∼17-km-thick oceanic Hikurangi Plateau beneath the SKA. Subduction of this basaltic mass should greatly increase fluid loss from the downgoing slab, initiating extensive melting in the upper mantle wedge and invigorating the hydrothermal systems of the SKA. Conversely, volcanic centers in the southern MKA are starved of magma replenishment and so their hydrothermal systems are waning. Farther north, where the MKA centers merge with the Kermadec Ridge, fewer but larger magma bodies accumulate in the thicker (older) crust, ensuring more widely separated, caldera-dominated volcanic centers.
AB - The 2,500-km Kermadec-Tonga arc is the longest submarine arc on the planet. Here, we report on the second of a series of cruises designed to investigate large-scale controls on active hydrothermal venting on this arc. The 2002 NZAPLUME II cruise surveyed 12 submarine volcanic centers along ∼580 km of the middle Kermadec arc (MKA), extending a 1999 cruise that surveyed 260 km of the southern Kermadec arc (SKA). Average spacing between volcanic centers increases northward from 30 km on backarc crust along the SKA, to 45 km on backarc crust along the southern MKA, to 58 km where the MKA joins the Kermadec Ridge. Volcanic cones dominate in the backarc, and calderas dominate the Kermadec Ridge. The incidence of venting is higher along the MKA (83%, 10 of 12 volcanic centers) than the SKA (67%, 8 of 12), but the relative intensity of venting, as given by plume thickness, areal extent, and concentration of dissolved gases and ionic species, is generally weaker in the MKA. This pattern may reflect subduction of the ∼17-km-thick oceanic Hikurangi Plateau beneath the SKA. Subduction of this basaltic mass should greatly increase fluid loss from the downgoing slab, initiating extensive melting in the upper mantle wedge and invigorating the hydrothermal systems of the SKA. Conversely, volcanic centers in the southern MKA are starved of magma replenishment and so their hydrothermal systems are waning. Farther north, where the MKA centers merge with the Kermadec Ridge, fewer but larger magma bodies accumulate in the thicker (older) crust, ensuring more widely separated, caldera-dominated volcanic centers.
UR - http://www.scopus.com/inward/record.url?scp=64249149540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64249149540&partnerID=8YFLogxK
U2 - 10.1029/2006GC001495
DO - 10.1029/2006GC001495
M3 - Article
AN - SCOPUS:64249149540
SN - 1525-2027
VL - 8
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 7
M1 - Q07007
ER -