SUFFICIENT CONDITIONS FOR ITERATED TIMING ANALYSIS TO CONVERGE LOCALLY.

Kiichi Urahama

    研究成果: ジャーナルへの寄稿学術誌査読

    抄録

    This paper investigates the convergence property of a circuit simulation technique called an iterated timing analysis. A block strictly row-wise or column-wise diagonal dominant matrix is defined, and these matrices are shown to be nonsingular. Both block Jacobi method and block Gauss-Seidel iteration are proved to converge for the equation whose coefficient matrix is one of these matrices. On the basis of these results, the following two sufficient conditions for the iterated timing analysis to converge locally are given: (i) the capacitance matrix of the circuit is block strictly row-wise or column-wise diagonally dominant and a time step is sufficiently small, (ii) the conductance matrix of the circuit has the same property and a time step is sufficiently large.

    本文言語英語
    ページ(範囲)1289-1293
    ページ数5
    ジャーナルTransactions of the Institute of Electronics and Communication Engineers of Japan. Section E
    E69
    12
    出版ステータス出版済み - 12月 1986

    !!!All Science Journal Classification (ASJC) codes

    • 工学(全般)

    フィンガープリント

    「SUFFICIENT CONDITIONS FOR ITERATED TIMING ANALYSIS TO CONVERGE LOCALLY.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル