TY - JOUR
T1 - Suppression of DYRK ortholog expression affects wax ester fermentation in Euglena gracilis
AU - Kimura, Mitsuhiro
AU - Ishikawa, Takahiro
N1 - Funding Information:
We thank Dr. Yuji Tanaka, Ms. Kaeko Kurihara, Ms. Jun Luo, Dr. Takanori Maruta, and Dr. Takahisa Ogawa (Shimane University) for technical assistance and helpful discussions. This work was supported by CREST program from the JST.
Funding Information:
Acknowledgements We thank Dr. Yuji Tanaka, Ms. Kaeko Kurihara, Ms. Jun Luo, Dr. Takanori Maruta, and Dr. Takahisa Ogawa (Shimane University) for technical assistance and helpful discussions. This work was supported by CREST program from the JST.
Publisher Copyright:
© 2017, Springer Science+Business Media B.V.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - In the microalga Euglena gracilis, the storage polysaccharide paramylon (β-1,3-D-glucan) is degraded to glucose, and finally converted to wax esters under anaerobic conditions. The wax esters and paramylon are now considered to be valuable materials for applications in biofuel production and in medicine. Genetic improvements of wax esters and paramylon accumulation in Euglena would facilitate their large-scale industrial applications; however, such improvements have thus far been difficult to realize because the regulatory factors involved in the wax ester fermentation pathway remain mostly unknown. Recently, two of dual-specificity Tyr phosphorylation-regulated kinases, starch degradation 1 (STD1) and triacylglycerol accumulation regulator 1 (TAR1), have been reported to regulate triacylglycerol metabolism in Chlamydomonas reinhardtii. In this study, we identified the Euglena DYRK orthologous sequences, and gene-silencing of EgSTD1 and EgSTD2 showed an increase in accumulation of paramylon and the following anaerobic wax ester production. This result indicated that EgSTD1 and EgSTD2 play a significant role in regulation of the wax ester fermentation pathway.
AB - In the microalga Euglena gracilis, the storage polysaccharide paramylon (β-1,3-D-glucan) is degraded to glucose, and finally converted to wax esters under anaerobic conditions. The wax esters and paramylon are now considered to be valuable materials for applications in biofuel production and in medicine. Genetic improvements of wax esters and paramylon accumulation in Euglena would facilitate their large-scale industrial applications; however, such improvements have thus far been difficult to realize because the regulatory factors involved in the wax ester fermentation pathway remain mostly unknown. Recently, two of dual-specificity Tyr phosphorylation-regulated kinases, starch degradation 1 (STD1) and triacylglycerol accumulation regulator 1 (TAR1), have been reported to regulate triacylglycerol metabolism in Chlamydomonas reinhardtii. In this study, we identified the Euglena DYRK orthologous sequences, and gene-silencing of EgSTD1 and EgSTD2 showed an increase in accumulation of paramylon and the following anaerobic wax ester production. This result indicated that EgSTD1 and EgSTD2 play a significant role in regulation of the wax ester fermentation pathway.
UR - http://www.scopus.com/inward/record.url?scp=85026997770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026997770&partnerID=8YFLogxK
U2 - 10.1007/s10811-017-1235-y
DO - 10.1007/s10811-017-1235-y
M3 - Article
AN - SCOPUS:85026997770
SN - 0921-8971
VL - 30
SP - 367
EP - 373
JO - Journal of Applied Phycology
JF - Journal of Applied Phycology
IS - 1
ER -