Synergistic effect of corrosion and residual stress on fatigue cracks of finger-type bridge expansion joints

Muye Yang, Shigenobu Kainuma, Wataru Nabeshima, Motoshi Yamauchi, Bohai Ji

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Finger-type expansion joints (FJs) have been extensively used in highway bridges and are exposed to the repeated impacts of traffic loading and corrosive environments. In this study, the corrosion and cracking behaviors of FJs serving in bridges for more than 25 years were investigated. The microstructure, electrochemical properties, and dynamic response of the FJs were investigated to analyze the fracture mechanism. The results showed that the crack-induced mechanisms of the two main failure modes were different because the synergistic effect of corrosion with residual stress changed depending on the degree of corrosion. First, considerable residual tensile stress, which enhanced the effective stress range, was the critical cause of fatigue crack initiation in the less corroded heat-affected zone (HAZ). Second, the dominant mechanism for cracking was the applied stress to the severely eroded FJ bottom, which was accelerated by galvanic corrosion. Crack-inducing factors included a combination of stress concentration and dynamic springback behavior.

本文言語英語
論文番号105894
ジャーナルEngineering Failure Analysis
131
DOI
出版ステータス出版済み - 1月 2022

!!!All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「Synergistic effect of corrosion and residual stress on fatigue cracks of finger-type bridge expansion joints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル