System identification for Quad-rotor parameters using neural network

Tarek N. Dief, Shigeo Yoshida

研究成果: ジャーナルへの寄稿学術誌査読

18 被引用数 (Scopus)

抄録

This paper presents a new technique to identify the system parameters without using the system governing equations. This technique is the time series prediction using neural network. The theoretical model was applied using simulations, after that the experiments were done to get the suitable construction for the neural model. A comparison between neural network and placket’s model is discussed. The advantages and disadvantages of both models were explained. The main idea of neural network is based on back-propagation algorithm. The equations and steps for iteration are presented and the relation between changing the number of iteration with the system frequency. The controller used is pole placement controller based on the neural network results as a system model.

本文言語英語
ページ(範囲)6-11
ページ数6
ジャーナルEvergreen
3
1
DOI
出版ステータス出版済み - 2016

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • 表面、皮膜および薄膜
  • マネジメント、モニタリング、政策と法律

フィンガープリント

「System identification for Quad-rotor parameters using neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル