Tagged-particle dynamics in weak turbulence: System size dependence of Nikolaevskii turbulence

Takayuki Narumi, Yoshiki Hidaka

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Hierarchical interaction can cause turbulent flow even in a weakly nonlinear regime. One of such kinds of turbulence is weak turbulence, which is modeled as spatiotemporal chaos in nonlinear mathematical models. Here, we theoretically study tagged-particle dynamics in a model of weak turbulence, called Nikolaevskii turbulence; especially, the system size dependence is discussed in this paper. The system size does not affect the properties of anomalous diffusion when it is longer than a characteristic length. However, the properties with system size shorter than the characteristic length deviate from those with longer system sizes. It implies that there is a cutoff length in the system size of the Nikolaevskii turbulence. The cutoff length agrees with the critical system size already proposed in the discussion of dynamical exponents. Our results suggest that to investigate the Nikolaevskii turbulence at a low parameter region the system size must be set to be long enough.

本文言語英語
ホスト出版物のタイトルInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2019
編集者Theodore E. Simos, Theodore E. Simos, Theodore E. Simos, Theodore E. Simos, Theodore E. Simos, Charalambos Tsitouras
出版社American Institute of Physics Inc.
ISBN(電子版)9780735440258
DOI
出版ステータス出版済み - 11 24 2020
イベントInternational Conference on Numerical Analysis and Applied Mathematics 2019, ICNAAM 2019 - Rhodes, ギリシャ
継続期間: 9 23 20199 28 2019

出版物シリーズ

名前AIP Conference Proceedings
2293
ISSN(印刷版)0094-243X
ISSN(電子版)1551-7616

会議

会議International Conference on Numerical Analysis and Applied Mathematics 2019, ICNAAM 2019
Countryギリシャ
CityRhodes
Period9/23/199/28/19

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

フィンガープリント 「Tagged-particle dynamics in weak turbulence: System size dependence of Nikolaevskii turbulence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル