TY - JOUR
T1 - Tamavidin 2-HOT, a highly thermostable biotin-binding protein
AU - Takakura, Yoshimitsu
AU - Suzuki, Junko
AU - Oka, Naomi
AU - Kakuta, Yoshimitsu
PY - 2014/1/10
Y1 - 2014/1/10
N2 - Tamavidin 2 is a fungal tetrameric protein that binds with high affinity to biotin, like avidin and streptavidin. We replaced asparagine-115, which lies in a subunit-subunit interface of tamavidin 2, with cysteine to generate the novel, highly thermostable protein tamavidin 2-HOT. Tamavidin 2-HOT retained more than 80% of its biotin-binding activity even after incubation at 99.9°C for 60min and was fully active in 70% dimethylsulfoxide for 30min, whereas in these harsh conditions, avidin, streptavidin, and tamavidin 2 lost their activities (less than 20% of their biotin-binding activities). The Tm in which the biotin-binding activity becomes half of tamavidin 2-HOT was 105°C, at least 20°C higher than those of avidin, streptavidin, and tamavidin 2. Because a reducing agent removed the thermal stability of tamavidin 2-HOT, the N115C mutation likely created disulfide bridges that stabilized inter-subunit associations. Tamavidin 2-HOT is efficiently produced in the soluble form by Escherichia coli for practical use. The isoelectric point of tamavidin 2-HOT (7.4) is sufficiently low to reduce the chance for non-specific binding of non-target molecules due to high positive charges. Therefore, tamavidin 2-HOT may be useful in diverse novel applications that take advantage of its high biotin-binding capability that can withstand harsh conditions.
AB - Tamavidin 2 is a fungal tetrameric protein that binds with high affinity to biotin, like avidin and streptavidin. We replaced asparagine-115, which lies in a subunit-subunit interface of tamavidin 2, with cysteine to generate the novel, highly thermostable protein tamavidin 2-HOT. Tamavidin 2-HOT retained more than 80% of its biotin-binding activity even after incubation at 99.9°C for 60min and was fully active in 70% dimethylsulfoxide for 30min, whereas in these harsh conditions, avidin, streptavidin, and tamavidin 2 lost their activities (less than 20% of their biotin-binding activities). The Tm in which the biotin-binding activity becomes half of tamavidin 2-HOT was 105°C, at least 20°C higher than those of avidin, streptavidin, and tamavidin 2. Because a reducing agent removed the thermal stability of tamavidin 2-HOT, the N115C mutation likely created disulfide bridges that stabilized inter-subunit associations. Tamavidin 2-HOT is efficiently produced in the soluble form by Escherichia coli for practical use. The isoelectric point of tamavidin 2-HOT (7.4) is sufficiently low to reduce the chance for non-specific binding of non-target molecules due to high positive charges. Therefore, tamavidin 2-HOT may be useful in diverse novel applications that take advantage of its high biotin-binding capability that can withstand harsh conditions.
UR - http://www.scopus.com/inward/record.url?scp=84889578293&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889578293&partnerID=8YFLogxK
U2 - 10.1016/j.jbiotec.2013.10.034
DO - 10.1016/j.jbiotec.2013.10.034
M3 - Article
C2 - 24211408
AN - SCOPUS:84889578293
VL - 169
SP - 1
EP - 8
JO - Journal of Biotechnology
JF - Journal of Biotechnology
SN - 0168-1656
IS - 1
ER -