Tan-concavity property for Lagrangian phase operators and applications to the tangent Lagrangian phase flow

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

We explore the tan-concavity of the Lagrangian phase operator for the study of the deformed Hermitian Yang-Mills (dHYM) metrics. This new property compensates for the lack of concavity of the Lagrangian phase operator as long as the metric is almost calibrated. As an application, we introduce the tangent Lagrangian phase flow (TLPF) on the space of almost calibrated (1, 1)-forms that fits into the GIT framework for dHYM metrics recently discovered by Collins-Yau. The TLPF has some special properties that are not seen for the line bundle mean curvature flow (i.e. the mirror of the Lagrangian mean curvature flow for graphs). We show that the TLPF starting from any initial data exists for all positive time. Moreover, we show that the TLPF converges smoothly to a dHYM metric assuming the existence of a C-subsolution, which gives a new proof for the existence of dHYM metrics in the highest branch.

本文言語英語
論文番号2050116
ジャーナルInternational Journal of Mathematics
31
14
DOI
出版ステータス出版済み - 12 2020

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Tan-concavity property for Lagrangian phase operators and applications to the tangent Lagrangian phase flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル