Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation

研究成果: ジャーナルへの寄稿記事

抄録

The Nankai subduction zone off the Kii Peninsula, Japan, has a large potential to generate megathrust earthquakes in the near future. To investigate the temporal variation of stress or strain in the Nankai subduction zone, we estimated the temporal variation of seismic velocity by using cross-correlations of ambient noise in the frequency range 0.7–2.0 Hz, which was dominated by ACR waves, recorded by the DONET offshore seismic network from 1 October 2014 to 30 November 2017. The 1 April 2016 Off-Mie earthquake (MW 5.9) and its aftershocks occurred beneath the seismic network. Our results document a clear decrease in seismic velocity at the time of the earthquake. These coseismic velocity drops were correlated with peak ground velocities at each station, suggesting that dynamic stress changes due to strong ground motions are a primary factor in coseismic velocity variations. Differences in the sensitivity of seismic velocity changes to peak ground velocity may reflect subsurface conditions at each station, such as geological structures and effective pressure conditions. We also observed a long-term increase in seismic velocities, independent of the 2016 earthquake, that may reflect tectonic strain accumulation around the Nankai subduction zone. After removing the long-term trend, we found that the coseismic velocity drops had not completely recovered by the end of the observation period, possibly indicating nonlinear effects of the 2016 earthquake. Our results suggest that ambient noise cross-correlation might be used to monitor the stress state in the Nankai accretionary prism in offshore environments, which would contribute to a better understanding of earthquake processes. [Figure not available: see fulltext.].

元の言語英語
記事番号62
ジャーナルProgress in Earth and Planetary Science
5
発行部数1
DOI
出版物ステータス出版済み - 12 1 2018

Fingerprint

ambient noise
seismic velocity
subduction zone
earthquake
temporal variation
stress change
accretionary prism
geological structure
aftershock
ground motion
tectonics

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

これを引用

@article{4e65571bbd1b4e18bf2d28b044913062,
title = "Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation",
abstract = "The Nankai subduction zone off the Kii Peninsula, Japan, has a large potential to generate megathrust earthquakes in the near future. To investigate the temporal variation of stress or strain in the Nankai subduction zone, we estimated the temporal variation of seismic velocity by using cross-correlations of ambient noise in the frequency range 0.7–2.0 Hz, which was dominated by ACR waves, recorded by the DONET offshore seismic network from 1 October 2014 to 30 November 2017. The 1 April 2016 Off-Mie earthquake (MW 5.9) and its aftershocks occurred beneath the seismic network. Our results document a clear decrease in seismic velocity at the time of the earthquake. These coseismic velocity drops were correlated with peak ground velocities at each station, suggesting that dynamic stress changes due to strong ground motions are a primary factor in coseismic velocity variations. Differences in the sensitivity of seismic velocity changes to peak ground velocity may reflect subsurface conditions at each station, such as geological structures and effective pressure conditions. We also observed a long-term increase in seismic velocities, independent of the 2016 earthquake, that may reflect tectonic strain accumulation around the Nankai subduction zone. After removing the long-term trend, we found that the coseismic velocity drops had not completely recovered by the end of the observation period, possibly indicating nonlinear effects of the 2016 earthquake. Our results suggest that ambient noise cross-correlation might be used to monitor the stress state in the Nankai accretionary prism in offshore environments, which would contribute to a better understanding of earthquake processes. [Figure not available: see fulltext.].",
author = "Tatsunori Ikeda and Takeshi Tsuji",
year = "2018",
month = "12",
day = "1",
doi = "10.1186/s40645-018-0211-8",
language = "English",
volume = "5",
journal = "Progress in Earth and Planetary Science",
issn = "2197-4284",
publisher = "Springer Open",
number = "1",

}

TY - JOUR

T1 - Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation

AU - Ikeda, Tatsunori

AU - Tsuji, Takeshi

PY - 2018/12/1

Y1 - 2018/12/1

N2 - The Nankai subduction zone off the Kii Peninsula, Japan, has a large potential to generate megathrust earthquakes in the near future. To investigate the temporal variation of stress or strain in the Nankai subduction zone, we estimated the temporal variation of seismic velocity by using cross-correlations of ambient noise in the frequency range 0.7–2.0 Hz, which was dominated by ACR waves, recorded by the DONET offshore seismic network from 1 October 2014 to 30 November 2017. The 1 April 2016 Off-Mie earthquake (MW 5.9) and its aftershocks occurred beneath the seismic network. Our results document a clear decrease in seismic velocity at the time of the earthquake. These coseismic velocity drops were correlated with peak ground velocities at each station, suggesting that dynamic stress changes due to strong ground motions are a primary factor in coseismic velocity variations. Differences in the sensitivity of seismic velocity changes to peak ground velocity may reflect subsurface conditions at each station, such as geological structures and effective pressure conditions. We also observed a long-term increase in seismic velocities, independent of the 2016 earthquake, that may reflect tectonic strain accumulation around the Nankai subduction zone. After removing the long-term trend, we found that the coseismic velocity drops had not completely recovered by the end of the observation period, possibly indicating nonlinear effects of the 2016 earthquake. Our results suggest that ambient noise cross-correlation might be used to monitor the stress state in the Nankai accretionary prism in offshore environments, which would contribute to a better understanding of earthquake processes. [Figure not available: see fulltext.].

AB - The Nankai subduction zone off the Kii Peninsula, Japan, has a large potential to generate megathrust earthquakes in the near future. To investigate the temporal variation of stress or strain in the Nankai subduction zone, we estimated the temporal variation of seismic velocity by using cross-correlations of ambient noise in the frequency range 0.7–2.0 Hz, which was dominated by ACR waves, recorded by the DONET offshore seismic network from 1 October 2014 to 30 November 2017. The 1 April 2016 Off-Mie earthquake (MW 5.9) and its aftershocks occurred beneath the seismic network. Our results document a clear decrease in seismic velocity at the time of the earthquake. These coseismic velocity drops were correlated with peak ground velocities at each station, suggesting that dynamic stress changes due to strong ground motions are a primary factor in coseismic velocity variations. Differences in the sensitivity of seismic velocity changes to peak ground velocity may reflect subsurface conditions at each station, such as geological structures and effective pressure conditions. We also observed a long-term increase in seismic velocities, independent of the 2016 earthquake, that may reflect tectonic strain accumulation around the Nankai subduction zone. After removing the long-term trend, we found that the coseismic velocity drops had not completely recovered by the end of the observation period, possibly indicating nonlinear effects of the 2016 earthquake. Our results suggest that ambient noise cross-correlation might be used to monitor the stress state in the Nankai accretionary prism in offshore environments, which would contribute to a better understanding of earthquake processes. [Figure not available: see fulltext.].

UR - http://www.scopus.com/inward/record.url?scp=85054687495&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054687495&partnerID=8YFLogxK

U2 - 10.1186/s40645-018-0211-8

DO - 10.1186/s40645-018-0211-8

M3 - Article

VL - 5

JO - Progress in Earth and Planetary Science

JF - Progress in Earth and Planetary Science

SN - 2197-4284

IS - 1

M1 - 62

ER -