The Euler multiplicity and addition-deletion theorems for multiarrangements

Takuro Abe, Hiroaki Terao, Max Wakefield

研究成果: Contribution to journalArticle査読

22 被引用数 (Scopus)

抄録

The addition-deletion theorems for hyperplane arrangements, which were originally shown by Terao [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980) 293-320.], provide useful ways to construct examples of free arrangements. In this article, we prove addition-deletion theorems for multiarrangements. A key to the generalization is the definition of a new multiplicity, called the Euler multiplicity, of a restricted multiarrangement. We compute the Euler multiplicities in many cases. Then we apply the addition-deletion theorems to various arrangements, including supersolvable arrangements and the Coxeter arrangement of type A3, to construct free and non-free multiarrangements.

本文言語英語
ページ(範囲)335-348
ページ数14
ジャーナルJournal of the London Mathematical Society
77
2
DOI
出版ステータス出版済み - 4 2008
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「The Euler multiplicity and addition-deletion theorems for multiarrangements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル