The gap hypothesis for finite groups which have an abelian quotient group not of order a power of 2

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)

抄録

For a finite group G, an L(G)-free gap G-module V is a finite dimensional real G-representation space satisfying the two conditions: (1) V L = 0 for any normal subgroup L of G with prime power index. (2) dim V P > 2 dim V H for any P < H ≤ G such that P is of prime power order. A finite group G not of prime power order is called a gap group if there is an L (G)-free gap G-module. We give a necessary and sufficient condition for that G is a gap group for a finite group G satisfying that G/[G, G] is not a 2-group, where [G, G] is the commutator subgroup of G.

本文言語英語
ページ(範囲)91-106
ページ数16
ジャーナルJournal of the Mathematical Society of Japan
64
1
DOI
出版ステータス出版済み - 2012

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「The gap hypothesis for finite groups which have an abelian quotient group not of order a power of 2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル