The generalized Korteweg-de Vries equation with time oscillating nonlinearity in scale critical Sobolev space

Jun ichi Segata, Keishu Watanabe

研究成果: Contribution to journalArticle査読

抄録

We consider the generalized Korteweg-de Vries (gKdV) equation with the time oscillating nonlinearity: ∂tu + ∂x 3u + g(ωt)∂x(│u│p−1u) = 0, (t, x) ∈ R × R. Under the suitable assumption on g, we show that if the nonlinear term is mass critical or supercritical i.e., p≥ 5 and u(0)∈Ḣsp , where sp= 1 / 2 - 2 / (p- 1) is a scale critical exponent, then there exists a unique global solution to (gKdV) provided that | ω| is sufficiently large. We also obtain the behavior of the solution to (gKdV) as │ ω │ → ∞.

本文言語英語
論文番号51
ジャーナルNonlinear Differential Equations and Applications
23
5
DOI
出版ステータス出版済み - 10 1 2016
外部発表はい

All Science Journal Classification (ASJC) codes

  • 分析
  • 応用数学

フィンガープリント

「The generalized Korteweg-de Vries equation with time oscillating nonlinearity in scale critical Sobolev space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル