### 抜粋

Applications of the Huckel (tight binding) model are ubiquitous in quantum chemistry and solid state physics. The matrix representation of this model is isomorphic to an unoriented vertex adjacency matrix of a bipartite graph, which is also the Laplacian matrix plus twice the identity. In this paper, we analytically calculate the determinant and, when it exists, the inverse of this matrix in connection with the Green's function, G, of the N × N Huckel matrix. A corollary is a closed form expression for a Harmonic sum (Eq. (12)).We then extend the results to d-dimensional lattices, whose linear size is N. The existence of the inverse becomes a question of number theory. We prove a new theorem in number theory pertaining to vanishing sums of cosines and use it to prove that the inverse exists if and only if N + 1 and d are odd and d is smaller than the smallest divisor of N + 1. We corroborate our results by demonstrating the entry patterns of the Green's function and discuss applications related to transport and conductivity.

元の言語 | 英語 |
---|---|

ページ数 | 1 |

ジャーナル | Journal of Mathematical Physics |

巻 | 58 |

発行部数 | 3 |

DOI | |

出版物ステータス | 出版済み - 3 1 2017 |

### フィンガープリント

### All Science Journal Classification (ASJC) codes

- Statistical and Nonlinear Physics
- Mathematical Physics

### これを引用

*Journal of Mathematical Physics*,

*58*(3). https://doi.org/10.1063/1.4977080