TY - JOUR
T1 - The Hawaiian Rhodophyta Biodiversity Survey (2006-2010)
T2 - a summary of principal findings.
AU - Sherwood, Alison R.
AU - Kurihara, Akira
AU - Conklin, Kimberly Y.
AU - Sauvage, Thomas
AU - Presting, Gernot G.
N1 - Funding Information:
This research was funded by a grant from the National Science Foundation (DEB-0542608 to A.R.S. and G.G.P.) to support the Hawaiian Rhodophyta Biodiversity Project. T.S. was partially supported by The David and Lucile Packard Foundation (grant #2006-30569 to I.A. Abbott), and this grant also supported the collection and processing of many samples from the Northwestern Hawaiian Islands. Many thanks to Norman Wang for maintaining HADB and providing data downloads. We thank the many phycologists who helped by providing samples or collecting assistance. Napua Harbottle, Neal Evenhuis, Jack Fisher and Roy Tsuda of the Bernice P. Bishop Museum are acknowledged for their assistance with sampling from collections at the Herbarium Pacificum.
PY - 2010
Y1 - 2010
N2 - The Hawaiian red algal flora is diverse, isolated, and well studied from a morphological and anatomical perspective, making it an excellent candidate for assessment using a combination of traditional taxonomic and molecular approaches. Acquiring and making these biodiversity data freely available in a timely manner ensures that other researchers can incorporate these baseline findings into phylogeographic studies of Hawaiian red algae or red algae found in other locations. A total of 1,946 accessions are represented in the collections from 305 different geographical locations in the Hawaiian archipelago. These accessions represent 24 orders, 49 families, 152 genera and 252 species/subspecific taxa of red algae. One order of red algae (the Rhodachlyales) was recognized in Hawaii for the first time and 196 new island distributional records were determined from the survey collections. One family and four genera are reported for the first time from Hawaii, and multiple species descriptions are in progress for newly discovered taxa. A total of 2,418 sequences were generated for Hawaiian red algae in the course of this study--915 for the nuclear LSU marker, 864 for the plastidial UPA marker, and 639 for the mitochondrial COI marker. These baseline molecular data are presented as neighbor-joining trees to illustrate degrees of divergence within and among taxa. The LSU marker was typically most conserved, followed by UPA and COI. Phylogenetic analysis of a set of concatenated LSU, UPA and COI sequences recovered a tree that broadly resembled the current understanding of florideophyte red algal relationships, but bootstrap support was largely absent above the ordinal level. Phylogeographic trends are reported here for some common taxa within the Hawaiian Islands and include examples of those with, as well as without, intraspecific variation. The UPA and COI markers were determined to be the most useful of the three and are recommended for inclusion in future algal biodiversity surveys. Molecular data for the survey provide the most extensive assessment of Hawaiian red algal diversity and, in combination with the morphological/anatomical and distributional data collected as part of the project, provide a solid baseline data set for future studies of the flora. The data are freely available via the Hawaiian Algal Database (HADB), which was designed and constructed to accommodate the results of the project. We present the first DNA sequence reference collection for a tropical Pacific seaweed flora, whose value extends beyond Hawaii since many Hawaiian taxa are shared with other tropical areas.
AB - The Hawaiian red algal flora is diverse, isolated, and well studied from a morphological and anatomical perspective, making it an excellent candidate for assessment using a combination of traditional taxonomic and molecular approaches. Acquiring and making these biodiversity data freely available in a timely manner ensures that other researchers can incorporate these baseline findings into phylogeographic studies of Hawaiian red algae or red algae found in other locations. A total of 1,946 accessions are represented in the collections from 305 different geographical locations in the Hawaiian archipelago. These accessions represent 24 orders, 49 families, 152 genera and 252 species/subspecific taxa of red algae. One order of red algae (the Rhodachlyales) was recognized in Hawaii for the first time and 196 new island distributional records were determined from the survey collections. One family and four genera are reported for the first time from Hawaii, and multiple species descriptions are in progress for newly discovered taxa. A total of 2,418 sequences were generated for Hawaiian red algae in the course of this study--915 for the nuclear LSU marker, 864 for the plastidial UPA marker, and 639 for the mitochondrial COI marker. These baseline molecular data are presented as neighbor-joining trees to illustrate degrees of divergence within and among taxa. The LSU marker was typically most conserved, followed by UPA and COI. Phylogenetic analysis of a set of concatenated LSU, UPA and COI sequences recovered a tree that broadly resembled the current understanding of florideophyte red algal relationships, but bootstrap support was largely absent above the ordinal level. Phylogeographic trends are reported here for some common taxa within the Hawaiian Islands and include examples of those with, as well as without, intraspecific variation. The UPA and COI markers were determined to be the most useful of the three and are recommended for inclusion in future algal biodiversity surveys. Molecular data for the survey provide the most extensive assessment of Hawaiian red algal diversity and, in combination with the morphological/anatomical and distributional data collected as part of the project, provide a solid baseline data set for future studies of the flora. The data are freely available via the Hawaiian Algal Database (HADB), which was designed and constructed to accommodate the results of the project. We present the first DNA sequence reference collection for a tropical Pacific seaweed flora, whose value extends beyond Hawaii since many Hawaiian taxa are shared with other tropical areas.
UR - http://www.scopus.com/inward/record.url?scp=78549240984&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78549240984&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-10-258
DO - 10.1186/1471-2229-10-258
M3 - Article
C2 - 21092229
AN - SCOPUS:78549240984
SN - 1471-2229
VL - 10
SP - 258
JO - BMC Plant Biology
JF - BMC Plant Biology
ER -