The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant

Y. Choi, S. Kida, K. Takahashi

研究成果: Contribution to journalArticle査読

17 被引用数 (Scopus)

抄録

The mechanism behind the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant on March 2011 is investigated using a numerical model. This model is a Lagrangian particle tracking-ocean circulation coupled model that is capable of solving the movement and migration of radionuclides between seawater, particulates, and bottom sediments. Model simulations show the radionuclides dispersing rapidly into the interior of the North Pacific once they enter a meso-scale eddy. However, some radionuclides also remain near the coast, with spatial distribution depending strongly on the oceanic circulation during the first month after the release. Major adsorption to bottom sediments occurs during this first month and many of these radionuclides remain on the sea floor once they are adsorbed. Model results suggest that weak offshore advection during the first month will increase the adsorption of radionuclides to bottom sediments and decelerate the dispersion to the open ocean. If vertical mixing is weak, however, fewer radionuclides reach the sea floor and adsorb to bottom sediments. More radionuclides will then quickly disperse to the open ocean.

本文言語英語
ページ(範囲)4911-4925
ページ数15
ジャーナルBiogeosciences
10
7
DOI
出版ステータス出版済み - 2013
外部発表はい

All Science Journal Classification (ASJC) codes

  • 生態、進化、行動および分類学
  • 地表過程

フィンガープリント

「The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル