The influences of lipid and protein concentration on wear of ultra-high molecular weight polyethylene

Y. Sawae, T. Murakami, T. Sawano

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

The influence of lipid and proteins on the wear behaviour of ultra-high molecular weight polyethylene (UHMWPE) used in joint prostheses was examined by using multidirectional sliding pin-on-plate wear testers. In vivo wear behaviour of polyethylene components should be controlled to maintain the joint performance throughout the entire life cycle of artificial joints. However, there are many uncertainties about the wear mechanism of UHMWPE, especially about the effect of physiological environment. The physiological environment contains various kinds of biological molecules, such as proteins and lipids etc. These molecules can be entrained into a contact zone and possibly affect the friction and wear process of artificial joints. The aim of the current study is to examine the effects of proteins and lipids on the UHMWPE wear behaviour for better understanding of in vivo polyethylene wear process. The wear behaviour of UHMWPE on a stainless steel sliding pair for joint prostheses was evaluated by using our multidirectional sliding pin-on-plate wear testers, which can make a multidirectional sliding pathway similar to that of hip joint prostheses. Several phosphate buffered saline (PBS) solutions containing a synthetic lipid, dipalmitoyl phosphatidylcholine (L-α-DPPC), and two kinds of serum proteins, albumin and γ-globulin, were prepared. These solutions were used as lubricants in the wear test and the effect of the lipid and protein concentration on the UHMWPE wear was evaluated. Results of this study indicated that the wear behaviour of a UHMWPE-on-metal sliding pair was clearly affected by the lipid and protein concentration. Especially, the wear amount of UHMWPE increased significantly by increasing the γ-globulin concentration. Lipid could play a role of boundary lubricant and reduced wear of UHMWPE, if the protein content was significantly low. On the other hand, the polyethylene wear amount was increased with increasing lipid concentration in the case of relatively high protein concentration.

本文言語英語
ページ(範囲)171-177
ページ数7
ジャーナルTribology and Interface Engineering Series
48
DOI
出版ステータス出版済み - 2005

All Science Journal Classification (ASJC) codes

  • 材料力学
  • 機械工学
  • 表面および界面
  • 表面、皮膜および薄膜

フィンガープリント

「The influences of lipid and protein concentration on wear of ultra-high molecular weight polyethylene」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル