The k-distribution of generalized feedback shift register pseudorandom numbers

M. Fushimi, S. Tezuka

研究成果: Contribution to journalArticle査読

55 被引用数 (Scopus)

抄録

A necessary and sufficient condition is established for the generalized feedback shift register (GFSR) sequence introduced by Lewis and Payne to be k-distributed. Based upon the theorem, a theoretical test for k-distributivity is proposed and performed in a reasonable amount of computer time, even for k = 16 and a high degree of resolution (for which statistical tests are impossible because of the astronomical amount of computer time required). For the special class of GFSR generators considered by Arvillias and Maritsas based on the primitive trinomial Dp + Dq + 1 with q = an integral power of 2, it is shown that the sequence is k-distributed if and only if the lengths of all subregisters are at least k. The theorem also leads to a simple and efficient method of initializing the GFSR generator so that the sequence to be generated is k-distributed.

本文言語英語
ページ(範囲)516-523
ページ数8
ジャーナルCommunications of the ACM
26
7
DOI
出版ステータス出版済み - 7 1 1983

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンス(全般)

フィンガープリント

「The k-distribution of generalized feedback shift register pseudorandom numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル