The kappa function

Masanobu Kaneko, Masaaki Yoshida

研究成果: ジャーナルへの寄稿記事

4 引用 (Scopus)

抄録

The Kappa function is introduced as the function κ satisfying J(κ(τ)) = λ(λ), where J and λ are the elliptic modular functions. A Fourier expansion of κ is studied.

元の言語英語
ページ(範囲)1003-1013
ページ数11
ジャーナルInternational Journal of Mathematics
14
発行部数9
DOI
出版物ステータス出版済み - 11 1 2003

Fingerprint

Modular Functions
Fourier Expansion
Elliptic function

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

これを引用

The kappa function. / Kaneko, Masanobu; Yoshida, Masaaki.

:: International Journal of Mathematics, 巻 14, 番号 9, 01.11.2003, p. 1003-1013.

研究成果: ジャーナルへの寄稿記事

Kaneko, Masanobu ; Yoshida, Masaaki. / The kappa function. :: International Journal of Mathematics. 2003 ; 巻 14, 番号 9. pp. 1003-1013.
@article{a7476cf593b04d639de09c1ab8f68832,
title = "The kappa function",
abstract = "The Kappa function is introduced as the function κ satisfying J(κ(τ)) = λ(λ), where J and λ are the elliptic modular functions. A Fourier expansion of κ is studied.",
author = "Masanobu Kaneko and Masaaki Yoshida",
year = "2003",
month = "11",
day = "1",
doi = "10.1142/S0129167X0300206X",
language = "English",
volume = "14",
pages = "1003--1013",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "9",

}

TY - JOUR

T1 - The kappa function

AU - Kaneko, Masanobu

AU - Yoshida, Masaaki

PY - 2003/11/1

Y1 - 2003/11/1

N2 - The Kappa function is introduced as the function κ satisfying J(κ(τ)) = λ(λ), where J and λ are the elliptic modular functions. A Fourier expansion of κ is studied.

AB - The Kappa function is introduced as the function κ satisfying J(κ(τ)) = λ(λ), where J and λ are the elliptic modular functions. A Fourier expansion of κ is studied.

UR - http://www.scopus.com/inward/record.url?scp=0346938628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0346938628&partnerID=8YFLogxK

U2 - 10.1142/S0129167X0300206X

DO - 10.1142/S0129167X0300206X

M3 - Article

VL - 14

SP - 1003

EP - 1013

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

IS - 9

ER -