The local–global principle for symmetric determinantal representations of smooth plane curves in characteristic two

Yasuhiro Ishitsuka, Tetsushi Ito

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

We give an application of Mumford's theory of canonical theta characteristics to a Diophantine problem in characteristic two. We prove that a smooth plane curve over a global field of characteristic two is defined by the determinant of a symmetric matrix with entries in linear forms in three variables if and only if such a symmetric determinantal representation exists everywhere locally. It is a special feature in characteristic two because analogous results are not true in other characteristics.

本文言語英語
ページ(範囲)1316-1321
ページ数6
ジャーナルJournal of Pure and Applied Algebra
221
6
DOI
出版ステータス出版済み - 6月 1 2017
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「The local–global principle for symmetric determinantal representations of smooth plane curves in characteristic two」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル