The number of orbits of periodic box-ball systems

Akihiro Mikoda, Shuichi Inokuchi, Yoshihiro Mizoguchi, Mitsuhiko Fujio

    研究成果: Chapter in Book/Report/Conference proceedingConference contribution

    1 引用 (Scopus)

    抜粋

    A box-ball system is a kind of cellular automata obtained by the ultradiscrete Lotka-Volterra equation. Similarities and differences between behavious of discrete systems (cellular automata) and continuous systems (differential equations) are investigated using techniques of ultradiscretizations. Our motivations is to take advantage of behavious of box-ball systems for new kinds of computations. Especially, we tried to find out useful periodic box-ball systems(pBBS) for random number generations. Applicable pBBS systems should have long fundamental cycles. We focus on pBBS with at most two kinds of solitons and investigate their behaviours, especially, the length of cycles and the number of orbits. We showed some relational equations of soliton sizes, a box size and the number of orbits. Varying a box size, we also found out some simulation results of the periodicity of orbits of pBBS with same kinds of solitons.

    元の言語英語
    ホスト出版物のタイトルUnconventional Computation - 5th International Conference, UC 2006, Proceedings
    出版者Springer Verlag
    ページ181-194
    ページ数14
    ISBN(印刷物)3540385932, 9783540385936
    DOI
    出版物ステータス出版済み - 2006
    イベント5th International Conference on Unconventional Computation, UC 2006 - York, 英国
    継続期間: 9 4 20069 8 2006

    出版物シリーズ

    名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    4135 LNCS
    ISSN(印刷物)0302-9743
    ISSN(電子版)1611-3349

    その他

    その他5th International Conference on Unconventional Computation, UC 2006
    英国
    York
    期間9/4/069/8/06

    All Science Journal Classification (ASJC) codes

    • Theoretical Computer Science
    • Computer Science(all)

    フィンガープリント The number of orbits of periodic box-ball systems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Mikoda, A., Inokuchi, S., Mizoguchi, Y., & Fujio, M. (2006). The number of orbits of periodic box-ball systems. : Unconventional Computation - 5th International Conference, UC 2006, Proceedings (pp. 181-194). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 4135 LNCS). Springer Verlag. https://doi.org/10.1007/11839132_15