The quantum Rabi model and Lie algebra representations of sl2

Masato Wakayama, Taishi Yamasaki

研究成果: Contribution to journalArticle査読

11 被引用数 (Scopus)

抄録

The aim of the present paper is to understand the spectral problem of the quantum Rabi model in terms of Lie algebra representations of sl2(R). We define a second order element of the universal enveloping algebra u( sl2) of sl2(R), which, through the image of a principal series representation of sl2(R), provides a picture equivalent to the quantum Rabi model drawn by confluent Heun differential equations. By this description, in particular, we give a representation theoretic interpretation of the degenerate part of the spectrum (i.e., Judd's eigenstates) of the Rabi Hamiltonian due to Kus̈ in 1985, which is a part of the exceptional spectrum parameterized by integers. We also discuss the non-degenerate part of the exceptional spectrum of the model, in addition to the Judd eigenstates, from a viewpoint of infinite dimensional irreducible submodules (or subquotients) of the non-unitary principal series such as holomorphic discrete series representations of sl2(R).

本文言語英語
論文番号335203
ジャーナルJournal of Physics A: Mathematical and Theoretical
33
DOI
出版ステータス出版済み - 2014

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「The quantum Rabi model and Lie algebra representations of sl<sub>2</sub>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル