The root location problem for arc-disjoint arborescences

Satoru Fujishige, Naoyuki Kamiyama

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

In this paper, we consider two location problems of determining the best location of roots of arc-disjoint arborescences in a network. In the first problem, we are given prescribed vertex subsets and the problem asks for finding the best location of roots of arc-disjoint arborescences that span these vertex subsets. We show that this problem is NP-hard in general and that it can be solved in polynomial time in the case where the prescribed vertex subsets are convex. In the second problem, we are given a demand d(v) for each vertex v and the problem asks for finding the best location of roots of arc-disjoint arborescences such that each vertex v is contained in at least d(v) arborescences. We show that this problem is NP-hard in general.

本文言語英語
ページ(範囲)1964-1970
ページ数7
ジャーナルDiscrete Applied Mathematics
160
13-14
DOI
出版ステータス出版済み - 9 2012

All Science Journal Classification (ASJC) codes

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「The root location problem for arc-disjoint arborescences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル