The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions

Takashi Hara, Gordon Slade

研究成果: Contribution to journalArticle

29 引用 (Scopus)

抜粋

We prove the existence of an asymptotic expansion in the inverse dimension, to all orders, for the connective constant for self-avoiding walks on ℤd. For the critical point, defined as the reciprocal of the connective constant, the coefficients of the expansion are computed through order d−6, with a rigorous error bound of order d−7 Our method for computing terms in the expansion also applies to percolation, and for nearest-neighbour independent Bernoulli bond percolation on ℤd gives the 1/d-expansion for the critical point through order d−3, with a rigorous error bound of order d−4 The method uses the lace expansion.

元の言語英語
ページ(範囲)197-215
ページ数19
ジャーナルCombinatorics, Probability and Computing
4
発行部数3
DOI
出版物ステータス出版済み - 9 1995
外部発表Yes

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Statistics and Probability
  • Computational Theory and Mathematics
  • Applied Mathematics

フィンガープリント The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用