The semiclassical zeta function for geodesic flows on negatively curved manifolds

Frédéric Faure, Masato Tsujii

研究成果: Contribution to journalArticle

16 引用 (Scopus)

抜粋

We consider the semi-classical (or Gutzwiller–Voros) zeta functions for C contact Anosov flows. Analyzing the spectra of the generators of some transfer operators associated to the flow, we prove that, for arbitrarily small τ> 0 , its zeros are contained in the union of the τ-neighborhood of the imaginary axis, | R(s) | < τ, and the half-plane R(s) < - χ0+ τ, up to finitely many exceptions, where χ0> 0 is the hyperbolicity exponent of the flow. Further we show that the density of the zeros along the imaginary axis satisfy an analogue of the Weyl law.

元の言語英語
ページ(範囲)851-998
ページ数148
ジャーナルInventiones Mathematicae
208
発行部数3
DOI
出版物ステータス出版済み - 6 1 2017

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント The semiclassical zeta function for geodesic flows on negatively curved manifolds' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用