The strong slope conjecture for twisted generalized whitehead doubles

Kenneth L. Baker, Kimihiko Motegi, Toshie Takata

研究成果: Contribution to journalArticle査読

抄録

The Slope Conjecture proposed by Garoufalidis asserts that the degree of the colored Jones polynomial determines a boundary slope, and its refinement, the Strong Slope Conjecture proposed by Kalfagianni and Tran asserts that the linear term in the degree determines the topology of an essential surface that satisfies the Slope Conjecture. Under certain hypotheses, we show that twisted, generalized Whitehead doubles of a knot satisfies the Slope Conjecture and the Strong Slope Conjecture if the original knot does. Additionally, we provide a proof that there are Whitehead doubles which are not adequate.

本文言語英語
ページ(範囲)545-608
ページ数64
ジャーナルQuantum Topology
11
3
DOI
出版ステータス出版済み - 2020

All Science Journal Classification (ASJC) codes

  • Mathematical Physics
  • Geometry and Topology

フィンガープリント 「The strong slope conjecture for twisted generalized whitehead doubles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル