The third, fifth and sixth painlevé equations on weighted projective spaces

Hayato Chiba

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP3(p, q, r, s) with suitable weights (p, q, r, s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of CP3(p, q, r, s) and dynamical systems theory.

本文言語英語
論文番号019
ジャーナルSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
12
DOI
出版ステータス出版済み - 2 23 2016

All Science Journal Classification (ASJC) codes

  • Analysis
  • Mathematical Physics
  • Geometry and Topology

フィンガープリント 「The third, fifth and sixth painlevé equations on weighted projective spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル