Thermal characteristics of a FeF3 cathode via conversion reaction in comparison with LiFePO4

Mingjiong Zhou, Liwei Zhao, Shigeto Okada, Jun Ichi Yamaki

研究成果: Contribution to journalArticle査読

20 被引用数 (Scopus)

抄録

The thermal stability of a FeF3 cathode via a conversion reaction was quantitatively studied using differential scanning calorimetry (DSC). Mixtures of charged and discharged FeF3 electrodes and electrolyte were measured by changing the ratio of electrode to electrolyte. A mild exothermic peak was observed at temperatures ranging from 210 to 380 °C for the mixtures of charged electrode and electrolyte even if the electrode/electrolyte ratio was changed. Moreover, the cycling depth had no effect on the thermal stability of the charged electrode in the electrolyte. For the mixtures of discharged electrode and electrolyte, exothermic reactions occurred in the range of 250-350 °C, which varied with the electrode/electrolyte ratio. Although the exothermic reactions of the mixtures varied with the electrode/electrolyte ratio, the thermal risk for both charged and discharged electrodes coexisted with the electrolyte appeared to be mainly due to electrolyte decomposition. By comparing the heat values of mixtures of the charged and discharged electrodes and electrolyte, the FeF3 electrodes in the electrolyte demonstrated better thermal stability than LiFePO4 electrodes at elevated temperatures.

本文言語英語
ページ(範囲)8110-8115
ページ数6
ジャーナルJournal of Power Sources
196
19
DOI
出版ステータス出版済み - 10 1 2011

All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • 物理化学および理論化学
  • 電子工学および電気工学

フィンガープリント

「Thermal characteristics of a FeF<sub>3</sub> cathode via conversion reaction in comparison with LiFePO<sub>4</sub>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル