Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells

Tetsuya Kawamura, Arihisa Kimura, Minato Egashira, Shigeto Okada, Jun Ichi Yamaki

研究成果: Contribution to journalArticle査読

215 被引用数 (Scopus)

抄録

The thermal stability of some mixed-solvent electrolytes used in lithium cells was measured by differential scanning calorimetry (DSC) using airtight containers. The electrolytes used were ethylene carbonate (EC) + diethylcarbonate(DEC), EC + dimethylcarbonate(DMC), propylene carbonate (PC) + DEC, and PC + DMC in which was dissolved 1 M LiPF6 or 1 M LiClO4. The influence of water addition and lithium metal addition on the thermal behavior of these electrolytes was also investigated. The exothermic peak of LiPF6 electrolytes containing DEC was found at 255 °C, and the peak temperature of the electrolytes containing DEC was 15-20 °C lower than that of LiPF6 electrolytes containing DMC. This effect was also observed in the electrolytes including LiClO4. DMC was found to be more reactive than DEC. The thermal behavior of various kinds of LiPF6 electrolytes with lithium metal was measured by DSC. The exothermic reaction of 1 M LiPF6/EC + DEC, 1 M LiPF6/EC + DMC, and 1 M LiPF6/PC + DMC with lithium metal began at the melting point of lithium metal because of the break down of the solid electrolyte interface (SEI). The temperature was approximately 180 °C, whereas the self-heating of 1 M LiPF6/PC + DEC occurred before the melting point of lithium metal. The temperature at which the self-exothermal reaction began was 140 °C. Therefore, the lithium metal in this electrolyte was found to be thermally unstable. When water was added to the above electrolytes with lithium metal, the exothermic reaction began at less than 130 °C, probably due to a collapse of SEI in response to the HF that was a product of the reaction between LiPF6 and the added water.

本文言語英語
ページ(範囲)260-264
ページ数5
ジャーナルJournal of Power Sources
104
2
DOI
出版ステータス出版済み - 2 15 2002

All Science Journal Classification (ASJC) codes

  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • 物理化学および理論化学
  • 電子工学および電気工学

フィンガープリント

「Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル