Thermal transport and thermal stress in a molybdenum film-glass substrate system

Tingting Miao, Weigang Ma, Shen Yan, Xing Zhang, Masamichi Kohno, Yasuyuki Takata, Yoshifumi Ikoma

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

Three-dimensional integration with through-silicon vias is emerging as an approach for improving the performance of integrated circuits. Thermal transport and thermal stress in such designs currently limit their performance and reliability. In this study, the thermal dissipation and thermal stress in a 95.3-nm-thick molybdenum (Mo) film-glass substrate system were investigated using a picosecond laser pump-probe method with four different configurations. This allowed the thermal transport and the generation and propagation of coherent acoustic phonon waves in a Mo film-glass substrate system to be comprehensively studied for the first time. The universality of the superposition model previously proposed for a platinum film on a glass substrate was verified using the present Mo film-glass substrate system from the close agreement between experimental data and theoretical predictions. The thermal transport in the Mo film and the coherent acoustic phonon wave propagation in the Mo film and glass substrate, i.e., thermal diffusivity and longitudinal sound velocity, respectively, were also studied.

本文言語英語
論文番号021801
ジャーナルJournal of Vacuum Science and Technology B: Nanotechnology and Microelectronics
34
2
DOI
出版ステータス出版済み - 3 1 2016

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering
  • Materials Chemistry

フィンガープリント 「Thermal transport and thermal stress in a molybdenum film-glass substrate system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル