Three-dimensional instability of strained vortices in a stably stratified fluid

Takeshi Miyazaki, Yasuhide Fukumoto

研究成果: Contribution to journalArticle査読

42 被引用数 (Scopus)

抄録

The linear stability of unbounded strained vortices in a stably stratified fluid is investigated theoretically. The problem is reduced to a Floquet problem which is solved numerically. The three-dimensional elliptical instability of Pierrehumbert type [Phys. Rev. Lett. 57, 2157 (1986)] is shown to be suppressed by the stable stratification and it disappears when the Brunt- Väisälä frequency exceeds unity. On the other hand, two classes of new instability mode are found to occur. One appears only when the Brunt-Väisälä frequency is less than 2, whereas the other persists for all values of the Brunt-Väisälä frequency. The former mode is related to a parametric resonance of internal gravity waves, and the latter modes are related to superharmonic parametric instability.

本文言語英語
ページ(範囲)2515-2522
ページ数8
ジャーナルPhysics of Fluids A
4
11
DOI
出版ステータス出版済み - 1 1 1992
外部発表はい

All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「Three-dimensional instability of strained vortices in a stably stratified fluid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル