Tissue engineering using magnetite nanoparticles

研究成果: 著書/レポートタイプへの貢献

45 引用 (Scopus)


The major advantage of magnetic manipulation is "remote control." Magnetic labeling of cells with magnetic nanoparticles enables the manipulation of cells and also the control of cell functions by applying an external magnetic field. "Functional" magnetite nanoparticles were developed for cell manipulation using magnetic force, and the magnetite nanoparticles were applied to tissue-engineering processes, which are designated as magnetic force-based tissue engineering (Mag-TE). This chapter reviews recent progress in Mag-TE techniques, and the principles and utilities of the applications are discussed. This review covers three topics of magnetic cell manipulation using magnetite nanoparticles, including a magnetic force-based gene transfer technique (magnetofection), magnetic cell patterning using functional magnetite nanoparticles and micro-patterned magnetic field gradient concentrators, and finally applications for fabrication of tissue-like constructs in skin, liver, and muscle tissue engineering.

ホスト出版物のタイトルProgress in Molecular Biology and Translational Science
出版者Elsevier B.V.
出版物ステータス出版済み - 2011


名前Progress in Molecular Biology and Translational Science

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Molecular Biology

フィンガープリント Tissue engineering using magnetite nanoparticles' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Ito, A., & Kamihira, M. (2011). Tissue engineering using magnetite nanoparticles. : Progress in Molecular Biology and Translational Science (pp. 355-395). (Progress in Molecular Biology and Translational Science; 巻数 104). Elsevier B.V.. https://doi.org/10.1016/B978-0-12-416020-0.00009-7