Toric resolution of singularities in a certain class of C functions and asymptotic analysis of oscillatory integrals

Joe Kamimoto, Toshihiro Nose

研究成果: Contribution to journalReview article査読

5 被引用数 (Scopus)

抄録

In a seminal work of A. N. Varchenko, the behavior at infinity of oscillatory integrals with real analytic phase is precisely investigated by using the theory of toric varieties based on the geometry of the Newton polyhedron of the phase. The purpose of this paper is to generalize his results to the case that the phase is contained in a certain class of C functions. The key in our analysis is a toric resolution of singularities in the above class of C functions. The properties of poles of local zeta functions, which are closely related to the behavior of oscillatory integrals, are also studied under the associated situation.

本文言語英語
ページ(範囲)425-485
ページ数61
ジャーナルJournal of Mathematical Sciences (Japan)
23
2
出版ステータス出版済み - 2016

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Toric resolution of singularities in a certain class of C<sup>∞</sup> functions and asymptotic analysis of oscillatory integrals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル