Total mechanical unloading minimizes metabolic demand of left ventricle and dramatically reduces infarct size in myocardial infarction

Keita Saku, Takamori Kakino, Takahiro Arimura, Takafumi Sakamoto, Takuya Nishikawa, Kazuo Sakamoto, Masataka Ikeda, Takuya Kishi, Tomomi Ide, Kenji Sunagawa

研究成果: Contribution to journalArticle

11 引用 (Scopus)

抜粋

Background: Left ventricular assist device (LVAD) mechanically unloads the left ventricle (LV). Theoretical analysis indicates that partial LVAD support (p-LVAD), where LV remains ejecting, reduces LV preload while increases afterload resulting from the elevation of total cardiac output and mean aortic pressure, and consequently does not markedly decrease myocardial oxygen consumption (MVO2). In contrast, total LVAD support (t-LVAD), where LV no longer ejects, markedly decreases LV preload volume and afterload pressure, thereby strikingly reduces MVO2. Since an imbalance in oxygen supply and demand is the fundamental pathophysiology of myocardial infarction (MI), we hypothesized that t-LVAD minimizes MVO2 and reduces infarct size in MI. The purpose of this study was to evaluate the differential impact of the support level of LVAD on MVO2 and infarct size in a canine model of ischemia-reperfusion. Methods: In 5 normal mongrel dogs, we examined the impact of LVAD on MVO2 at 3 support levels: Control (no LVAD support), p-LVAD and t-LVAD. In another 16 dogs, ischemia was induced by occluding major branches of the left anterior descending coronary artery (90 min) followed by reperfusion (300 min). We activated LVAD from the beginning of ischemia until 300 min of reperfusion, and compared the infarct size among 3 different levels of LVAD support. Results: t-LVAD markedly reduced MVO2 (% reduction against Control: -56 ± 9%, p<0.01) whereas p-LVAD did less (-21 ± 14%, p<0.05). t-LVAD markedly reduced infarct size compared to p-LVAD (infarct area/area at risk: Control; 41.8 ± 6.4, p-LVAD; 29.1 ± 5.6 and t-LVAD; 5.0 ± 3.1%, p<0.01). Changes in creatine kinase-MB paralleled those in infarct size. Conclusions: Total LVAD support that minimizes metabolic demand maximizes the benefit of LVAD in the treatment of acute myocardial infarction.

元の言語英語
記事番号e0152911
ジャーナルPloS one
11
発行部数4
DOI
出版物ステータス出版済み - 4 2016

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

フィンガープリント Total mechanical unloading minimizes metabolic demand of left ventricle and dramatically reduces infarct size in myocardial infarction' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用