(Total) vector domination for graphs with bounded branchwidth

Toshimasa Ishii, Hirotaka Ono, Yushi Uno

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

2 被引用数 (Scopus)

抄録

Given a graph G= (V,E) of order n and an n-dimensional non-negative vector d= (d(1),d(2), d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S⊆ V such that every vertex v in V?S (resp., in V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.

元の言語英語
ホスト出版物のタイトルLATIN 2014
ホスト出版物のサブタイトルTheoretical Informatics - 11th Latin American Symposium, Proceedings
出版者Springer Verlag
ページ238-249
ページ数12
ISBN(印刷物)9783642544224
DOI
出版物ステータス出版済み - 2014
イベント11th Latin American Theoretical Informatics Symposium, LATIN 2014 - Montevideo, ウルグアイ
継続期間: 3 31 20144 4 2014

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8392 LNCS
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

その他

その他11th Latin American Theoretical Informatics Symposium, LATIN 2014
ウルグアイ
Montevideo
期間3/31/144/4/14

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント 「(Total) vector domination for graphs with bounded branchwidth」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル