(Total) Vector domination for graphs with bounded branchwidth

Toshimasa Ishii, Hirotaka Ono, Yushi Uno

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

Given a graph G=(V,E) of order n and an n-dimensional non-negative vector d=(d(1),d(2),...,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S⊆V such that every vertex v in V\S (resp., in V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.

本文言語英語
ページ(範囲)80-89
ページ数10
ジャーナルDiscrete Applied Mathematics
207
DOI
出版ステータス出版済み - 7 10 2016

All Science Journal Classification (ASJC) codes

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「(Total) Vector domination for graphs with bounded branchwidth」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル