Toward Feature-Preserving Vector Field Compression

Xin Liang, Sheng Di, Franck Cappello, Mukund Raj, Chunhui Liu, Kenji Ono, Zizhong Chen, Tom Peterka, Hanqi Guo

研究成果: ジャーナルへの寄稿学術誌査読

抄録

The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear and bilinear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications.

本文言語英語
ページ(範囲)1-16
ページ数16
ジャーナルIEEE Transactions on Visualization and Computer Graphics
DOI
出版ステータス印刷中 - 2022

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Toward Feature-Preserving Vector Field Compression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル