Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework

Trung Nghia Le, Sugimoto Akihiro, Shintaro Ono, Hiroshi Kawasaki

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 被引用数 (Scopus)

抄録

Amount and variety of training data drastically affect the performance of CNNs. Thus, annotation methods are becoming more and more critical to collect data efficiently. In this paper, we propose a simple yet efficient Interactive Self-Annotation framework to cut down both time and human labor cost for video object bounding box annotation. Our method is based on recurrent self-supervised learning and consists of two processes: automatic process and interactive process, where the automatic process aims to build a supported detector to speed up the interactive process. In the Automatic Recurrent Annotation, we let an off-the-shelf detector watch unlabeled videos repeatedly to reinforce itself automatically. At each iteration, we utilize the trained model from the previous iteration to generate better pseudo ground-truth bounding boxes than those at the previous iteration, recurrently improving self-supervised training the detector. In the Interactive Recurrent Annotation, we tackle the human-in-the-loop annotation scenario where the detector receives feedback from the human annotator. To this end, we propose a novel Hierarchical Correction module, where the annotated frame-distance binarizedly decreases at each time step, to utilize the strength of CNN for neighbor frames. Experimental results on various video datasets demonstrate the advantages of the proposed framework in generating high-quality annotations while reducing annotation time and human labor costs.

本文言語英語
ホスト出版物のタイトルProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3220-3229
ページ数10
ISBN(電子版)9781728165530
DOI
出版ステータス出版済み - 3 2020
イベント2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, 米国
継続期間: 3 1 20203 5 2020

出版物シリーズ

名前Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

会議

会議2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
国/地域米国
CitySnowmass Village
Period3/1/203/5/20

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル