Towards a kneading theory for Lozi mappings I: A solution of the pruning front conjecture and the first tangency problem

研究成果: ジャーナルへの寄稿学術誌査読

25 被引用数 (Scopus)

抄録

We construct a kneading theory à la Milnor-Thurston for Lozi mappings (piecewise affine homeomorphisms of the plane). As a two-dimensional analogue of the kneading sequence, the pruning front and the primary pruned region are introduced, and the admissibility criterion for symbol sequences known as the pruning front conjecture is proven under a mild condition on the parameters. Using this result, we show that topological properties of the dynamics of the Lozi mapping are determined by its pruning front and primary pruned region only. This gives us a solution to the first tangency problem for the Lozi family, moreover the boundary of the set of all horseshoes in the parameter space is shown to be algebraic.

本文言語英語
ページ(範囲)731-747
ページ数17
ジャーナルNonlinearity
10
3
DOI
出版ステータス出版済み - 5月 1 1997
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Towards a kneading theory for Lozi mappings I: A solution of the pruning front conjecture and the first tangency problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル