Towards robust object detection: Integrated background modeling based on spatio-temporal features

Tatsuya Tanaka, Atsushi Shimada, Rin-Ichiro Taniguchi, Takayoshi Yamashita, Daisaku Arita

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

8 引用 (Scopus)

抜粋

We propose a sophisticated method for background modeling based on spatio-temporal features. It consists of three complementary approaches: pixel-level background modeling, region-level one and frame-level one. The pixel-level background model uses the probability density function to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. The region-level model is based on the evaluation of the local texture around each pixel while reducing the effects of variations in lighting. The frame-level model detects sudden, global changes of the the image brightness and estimates a present background image from input image referring to a background model image. Then, objects are extracted by background subtraction. Fusing their approaches realizes robust object detection under varying illumination, which is shown in several experiments.

元の言語英語
ホスト出版物のタイトルComputer Vision, ACCV 2009 - 9th Asian Conference on Computer Vision, Revised Selected Papers
ページ201-202
ページ数2
エディションPART 1
DOI
出版物ステータス出版済み - 12 29 2010
イベント9th Asian Conference on Computer Vision, ACCV 2009 - Xi'an, 中国
継続期間: 9 23 20099 27 2009

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 1
5994 LNCS
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

その他

その他9th Asian Conference on Computer Vision, ACCV 2009
中国
Xi'an
期間9/23/099/27/09

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Towards robust object detection: Integrated background modeling based on spatio-temporal features' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Tanaka, T., Shimada, A., Taniguchi, R-I., Yamashita, T., & Arita, D. (2010). Towards robust object detection: Integrated background modeling based on spatio-temporal features. : Computer Vision, ACCV 2009 - 9th Asian Conference on Computer Vision, Revised Selected Papers (PART 1 版, pp. 201-202). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 5994 LNCS, 番号 PART 1). https://doi.org/10.1007/978-3-642-12307-8_19