Toxicity prediction from toxicogenomic data based on class association rule mining

Keisuke Nagata, Takashi Washio, Yoshinobu Kawahara, Akira Unami

研究成果: ジャーナルへの寄稿学術誌査読

9 被引用数 (Scopus)

抄録

While the recent advent of new technologies in biology such as DNA microarray and next-generation sequencer has given researchers a large volume of data representing genome-wide biological responses, it is not necessarily easy to derive knowledge that is accurate and understandable at the same time. In this study, we applied the Classification Based on Association (CBA) algorithm, one of the class association rule mining techniques, to the TG-GATEs database, where both toxicogenomic and toxicological data of more than 150 compounds in rat and human are stored. We compared the generated classifiers between CBA and linear discriminant analysis (LDA) and showed that CBA is superior to LDA in terms of both predictive performances (accuracy: 83% for CBA vs. 75% for LDA, sensitivity: 82% for CBA vs. 72% for LDA, specificity: 85% for CBA vs. 75% for LDA) and interpretability.

本文言語英語
ページ(範囲)1133-1142
ページ数10
ジャーナルToxicology Reports
1
DOI
出版ステータス出版済み - 12月 1 2014
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 毒物学
  • 健康、毒物学および変異誘発

フィンガープリント

「Toxicity prediction from toxicogenomic data based on class association rule mining」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル