Trajectory design in the circular restricted three-body problem using artificial invariant manifolds

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

This paper generalizes the invariant manifolds of unstable libration point orbits through the application of continuous thrust. Considering Jacobi constant of the end of invariant manifolds, an artificial periodic orbit around a libration point realizes heteroclinic connections between itself and an unforced periodic orbit with same Jacobi constant of the end of invariant manifolds. Heteroclinic connections between libration point orbits are constructed by detecting intersections of states of manifolds on the Poincaré map. We reveal low-energy spacecraft can transfer to some periodic orbits with different Jacobi constant. In addition, this paper defines New Jacobi constant of low-thrust spacecraft. By utilizing new Jacobi constant, we illustrate zero-velocity curves of low-thrust spacecraft and reveal that there is a crack of zero-velocity curves and spacecraft can pass the crack.

本文言語英語
ホスト出版物のタイトルSpaceflight Mechanics 2019
編集者Francesco Topputo, Andrew J. Sinclair, Matthew P. Wilkins, Renato Zanetti
出版社Univelt Inc.
ページ1235-1254
ページ数20
ISBN(印刷版)9780877036593
出版ステータス出版済み - 1 1 2019
イベント29th AAS/AIAA Space Flight Mechanics Meeting, 2019 - Maui, 米国
継続期間: 1 13 20191 17 2019

出版物シリーズ

名前Advances in the Astronautical Sciences
168
ISSN(印刷版)0065-3438

会議

会議29th AAS/AIAA Space Flight Mechanics Meeting, 2019
国/地域米国
CityMaui
Period1/13/191/17/19

All Science Journal Classification (ASJC) codes

  • 航空宇宙工学
  • 宇宙惑星科学

フィンガープリント

「Trajectory design in the circular restricted three-body problem using artificial invariant manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル