Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems

Tahmid Hasan Rupam, M. L. Palash, Md Amirul Islam, Bidyut Baran Saha

研究成果: ジャーナルへの寄稿学術誌査読

8 被引用数 (Scopus)

抄録

Solid-gas adsorption has drawn considerable attention utilizing low-grade waste heat and environment-friendly refrigerants for cooling, heating, and air-conditioning. However, low sorption capacity of the adsorbents is a long-standing challenge for achieving highly efficient adsorption heat pumps. This study aims to analyze and compare the performance of green synthesized transitional metal (10% Ni and 10% Co) doped aluminum fumarate metal-organic frameworks as adsorbent materials in an adsorption chiller where water is considered as the refrigerant. Water uptakes on these adsorbents were measured at 303 K, 323 K, and 343 K gravimetrically. It was found that both Ni and Co-doped samples showed higher equilibrium uptake when compared with the parent sample while the adsorption isotherm moved towards the lower pressure region. Additionally, adsorption cycles involving the pressure, temperature, and uptakes (P-T-q diagrams) were drawn to investigate their cyclic performances. The specific cooling effects were also calculated and compared among the associated adsorbent/adsorbate pairs having the adsorption, desorption, evaporator, and condenser temperatures considered as 303 K, 353 K, 288 K, and 308 K, respectively. Additional studies were conducted using the inverse gas chromatography technique to investigate the relation between the surface properties and the water adsorption isotherms.

本文言語英語
論文番号122079
ジャーナルEnergy
238
DOI
出版ステータス出版済み - 1月 1 2022

!!!All Science Journal Classification (ASJC) codes

  • 土木構造工学
  • 建築および建設
  • モデリングとシミュレーション
  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • エネルギー工学および電力技術
  • 汚染
  • エネルギー(全般)
  • 機械工学
  • 産業および生産工学
  • マネジメント、モニタリング、政策と法律
  • 電子工学および電気工学

フィンガープリント

「Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル