Traveling wave-standing wave transition in the coupled complex Ginzburg-Landau equations

    研究成果: ジャーナルへの寄稿記事

    11 引用 (Scopus)

    抜粋

    The coupled Ginzburg-Landau equations are studied numerically. The instability of a chaotic traveling wave state is characterized by means of a stability exponent. When the traveling wave state is unstable, several types of coexistent states of left and right traveling waves appear. Stationary and propagating soliton lattice states are numerically found as a stable coexistent state.

    元の言語英語
    ページ(範囲)148-150
    ページ数3
    ジャーナルPhysica Scripta T
    67
    出版物ステータス出版済み - 12 1 1996

      フィンガープリント

    All Science Journal Classification (ASJC) codes

    • Atomic and Molecular Physics, and Optics
    • Mathematical Physics
    • Condensed Matter Physics

    これを引用