Trivalent Maximal Surfaces in Minkowski Space

Wai Yeung Lam, Masashi Yasumoto

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

We investigate discretizations of maximal surfaces in Minkowski space, which are surfaces with vanishing mean curvature. The corresponding discrete surfaces admit a Weierstrass-type representation in terms of discrete holomorphic quadratic differentials. There are two particular types of discrete maximal surfaces that are obtained by taking the real part and the imaginary part of the representation formula, and they are deformable to each other by a one-parameter family. We further introduce a compatible notion of vertex normals for general trivalent surfaces to characterize their singularities in Minkowski space as in the smooth theory.

本文言語英語
ホスト出版物のタイトルLorentzian Geometry and Related Topics - GeLoMa 2016
編集者María A. Canadas-Pinedo, Francisco J. Palomo, Jose Luis Flores
出版社Springer New York LLC
ページ169-184
ページ数16
ISBN(印刷版)9783319662893
DOI
出版ステータス出版済み - 2017
外部発表はい
イベント8th International Meeting on Lorentzian Geometry,GeLoMa 2016 - Malaga, スペイン
継続期間: 9 20 20169 23 2016

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
211
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

会議

会議8th International Meeting on Lorentzian Geometry,GeLoMa 2016
国/地域スペイン
CityMalaga
Period9/20/169/23/16

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Trivalent Maximal Surfaces in Minkowski Space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル