Twitter Topic Progress Visualization using Micro-clustering

Takako Hashimoto, Akira Kusaba, Dave Shepard, Tetsuji Kuboyama, Kilho Shin, Takeaki Uno

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

This paper proposes a method for visualizing the progress of a bursty topic on Twitter using a previously-proposed micro-clustering technique, which reveals the cause and the progress of a burst. Micro-clustering can efficiently represent sub-topics of a bursty topic, which allows visualizing transitions between these subtopics over time. This process allows for a Twitter user to see the origin of a bursty topic more easily. To show the method’s effectiveness, we conducted an experiment on a real bursty topic, a controversy over childcare leave in Japan. When we extract sub-topics using micro-clustering, and analyze micro-clusters over time, we can understand the progress of the target topic and discover the micro-clusters that caused the burst.

本文言語英語
ホスト出版物のタイトルICPRAM 2020 - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods
編集者Maria De Marsico, Gabriella Sanniti di Baja, Ana Fred
出版社SciTePress
ページ585-592
ページ数8
ISBN(電子版)9789897583971
出版ステータス出版済み - 2020
外部発表はい
イベント9th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2020 - Valletta, マルタ
継続期間: 2 22 20202 24 2020

出版物シリーズ

名前ICPRAM 2020 - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods

会議

会議9th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2020
国/地域マルタ
CityValletta
Period2/22/202/24/20

All Science Journal Classification (ASJC) codes

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Twitter Topic Progress Visualization using Micro-clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル