Two estimates on the distribution of zeros of the first derivative of dirichlet L-functions under the generalized riemann hypothesis

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

The number of zeros and the distribution of the real part of non-real zeros of the derivatives of the Riemann zeta function have been investigated by B. C. Berndt, N. Levinson, H. L. Montgomery, H. Akatsuka, and the author. Berndt, Levinson, and Montgomery investigated the unconditional case, while Akatsuka and the author gave sharper estimates under the truth of the Riemann hypothesis. Recently, F. Ge improved the estimate on the number of zeros shown by Akatsuka. In this paper, we prove similar results related to the first derivative of Dirichlet L-functions associated with primitive Dirichlet characters under the assumption of the generalized Riemann hypothesis.

本文言語英語
ページ(範囲)471-502
ページ数32
ジャーナルJournal de Theorie des Nombres de Bordeaux
29
2
DOI
出版ステータス出版済み - 2017
外部発表はい

All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「Two estimates on the distribution of zeros of the first derivative of dirichlet L-functions under the generalized riemann hypothesis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル