Two-step estimation of ergodic Lévy driven SDE

Hiroki Masuda, Yuma Uehara

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

We consider high frequency samples from ergodic Lévy driven stochastic differential equation with drift coefficient a(x, α) and scale coefficient c(x, γ) involving unknown parameters α and γ. We suppose that the Lévy measure ν0, has all order moments but is not fully specified. We will prove the joint asymptotic normality of some estimators of α, γ and a class of functional parameter ∫ φ(z) ν0(dz) , which are constructed in a two-step manner: first, we use the Gaussian quasi-likelihood for estimation of (α, γ) ; and then, for estimating ∫ φ(z) ν0(dz) we make use of the method of moments based on the Euler-type residual with the the previously obtained quasi-likelihood estimator.

本文言語英語
ページ(範囲)105-137
ページ数33
ジャーナルStatistical Inference for Stochastic Processes
20
1
DOI
出版ステータス出版済み - 4 1 2017

All Science Journal Classification (ASJC) codes

  • 統計学および確率

フィンガープリント

「Two-step estimation of ergodic Lévy driven SDE」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル