Unfolded Seiberg–Witten Floer spectra, I

Definition and invariance

Tirasan Khandhawit, Jianfeng Lin, Hirofumi Sasahira

研究成果: ジャーナルへの寄稿記事

抄録

Let Y be a closed and oriented 3–manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for Y. These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology 3–spheres. We also compute some examples when Y is a Seifert space.

元の言語英語
ページ(範囲)2027-2114
ページ数88
ジャーナルGeometry and Topology
22
発行部数4
DOI
出版物ステータス出版済み - 4 5 2018

Fingerprint

Invariance
Homology
Closed
Generalise
Invariant

All Science Journal Classification (ASJC) codes

  • Geometry and Topology

これを引用

Unfolded Seiberg–Witten Floer spectra, I : Definition and invariance. / Khandhawit, Tirasan; Lin, Jianfeng; Sasahira, Hirofumi.

:: Geometry and Topology, 巻 22, 番号 4, 05.04.2018, p. 2027-2114.

研究成果: ジャーナルへの寄稿記事

Khandhawit, Tirasan ; Lin, Jianfeng ; Sasahira, Hirofumi. / Unfolded Seiberg–Witten Floer spectra, I : Definition and invariance. :: Geometry and Topology. 2018 ; 巻 22, 番号 4. pp. 2027-2114.
@article{0802d87e795544b898e8d027c4813f4b,
title = "Unfolded Seiberg–Witten Floer spectra, I: Definition and invariance",
abstract = "Let Y be a closed and oriented 3–manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for Y. These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology 3–spheres. We also compute some examples when Y is a Seifert space.",
author = "Tirasan Khandhawit and Jianfeng Lin and Hirofumi Sasahira",
year = "2018",
month = "4",
day = "5",
doi = "10.2140/gt.2018.22.2027",
language = "English",
volume = "22",
pages = "2027--2114",
journal = "Geometry and Topology",
issn = "1465-3060",
publisher = "University of Warwick",
number = "4",

}

TY - JOUR

T1 - Unfolded Seiberg–Witten Floer spectra, I

T2 - Definition and invariance

AU - Khandhawit, Tirasan

AU - Lin, Jianfeng

AU - Sasahira, Hirofumi

PY - 2018/4/5

Y1 - 2018/4/5

N2 - Let Y be a closed and oriented 3–manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for Y. These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology 3–spheres. We also compute some examples when Y is a Seifert space.

AB - Let Y be a closed and oriented 3–manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for Y. These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology 3–spheres. We also compute some examples when Y is a Seifert space.

UR - http://www.scopus.com/inward/record.url?scp=85045307529&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045307529&partnerID=8YFLogxK

U2 - 10.2140/gt.2018.22.2027

DO - 10.2140/gt.2018.22.2027

M3 - Article

VL - 22

SP - 2027

EP - 2114

JO - Geometry and Topology

JF - Geometry and Topology

SN - 1465-3060

IS - 4

ER -